JVM内存结构
其中堆和方法区是所有线程共享的,其他则为线程独有,HotSpot JVM使用基于分代的垃圾回收机制,所以在堆上又分为几个不同的区域(在G1中,各年龄代不再是连续的一整片内存,为了描述方便,这里还使用传统的表示方法),具体如下图所示:
JVM堆中的分区
二、GC负责的事情
GC的发展是随着JDK(Standard Edition)的发展一步步发展起来的,垃圾回收(Garbage Collection)可以说是JDK里最影响性能的行为了。GC做的事情,说白了就是「通过对内存进行管理,以保障在内存足够的时候,程序可以正常的使用内存」。具体而言,GC通常做的事情有以下3个: 1. 分配对象和对象的年龄管理 通常而言,GC需要管理「在上图中的年轻代(Young)分配对象,然后通过一系列的年龄管理,将之销毁或晋升到老年代(Tenured)中去」的过程。这个过程会伴随着若干次的Minor GC。 对于普通的对象而言,分配内存是一件很简单而且快速的事情。在对象还未创建时,其所占内存大小通过类的元数据就可以确定,而Eden区域的内存可以认为是连续的,所以给对象分配内存要做的只是在上图中Eden区域中把指针移动相应的长度,并将地址返回给对象的引用即可。当然实际的过程比这个复杂,在下文中会提到。 不过,有时候一个对象会直接在老年代中创建,这个点也会在后边提到。 2. 在老年代中进行标记 老年代的GC算法可以大致是认为是一个标记-整理(Mark-Compact,其实是混合了标记-清理,标记-复制和标记-整理)算法,所以老年代的垃圾清理首先要做的就是在老年代对存活的对象(可达性分析,关于不同的可达性可以参考JDK解构 – Java中的引用和动态代理的实现)进行标记,对于寻求大吞吐量的服务器应用来说,这个过程往往需要是并发的。 标记的过程发生在Major GC被触发之后,不同的GC对于MajorGC的触发条件和标记过程的实现也不尽相同。 3. 在老年代中进行压缩 在上一条的基础上,将还存活的对象进行压缩(CMS和G1的行为与此有些不同之处),压缩的过程就是将存活的对象从老年代的起点进行挨个复制,使得老年代维持在一片连续的内存中,消除内存碎片,对于内存分配速度的提升会有很大的帮助。 三、GC的种类 Hotspot会根据宿主机的硬件特性和操作系统类型,将之分为客户端型(client-class)或者服务器型(server-class),如果是服务器型主机,Java 9之前默认使用Parallel GC,Java 9中默认使用G1。对于服务器型主机的选择标准是「CPU核心数大于1,内存大于2GB」,所以现在大部分的主机都可以认为是服务器型主机。 这里讨论的所有GC都是基于分代垃圾回收算法的。 1. Serail Serail是最早的一款GC,它只使用一个线程来做所有的Minor和Major垃圾回收。它在运行时,其他所有的事情都会暂停。其工作方式十分简单,在需要GC的安全点,它会停止所有其他线程(Stop-The-World),对年轻代进行标记-复制,或对老年代进行标记-整理。 可以使用JVM参数-XX:+UseSerialGC来开启此GC,当使用此参数时,年轻代和老年代将都是用Serial来做垃圾回收。在年轻代使用标记-复制算法,将Eden中存活的对象和非空的Suvivor区(From)中存活的对象复制到空的Suvivor区(To)中去,同时将一部分Suvivor中的对象晋升到老年代去。在老年代则使用标记-整理算法。 看起来Serial古老而简陋,但在宿主机资源紧张或者JVM堆很小的情况下(比如堆内存大小只有不到100M),Serial反而可以达到更好的效果,因为其他并发或并行GC都是基于多线程的,会带来额外的线程切换和线程间通信的开销。 2. Parallel/Throughput Parallel在Java 9之前是服务器型宿主机中JVM的默认GC,其垃圾回收的算法和Serial基本相同,不同之处在与它使用多线程来执行。由于使用了多线程,可以享受多核CPU带来的优势,可以通过参数-XX:+UseParallelGC -XX:+UseParallelOldGC显示指定。 3. CMS CMS和G1都属于「Mostly Concurrent Mark and Sweep Garbage Collector」,可以使用-XX:+UseConcMarkSweepGC参数打开。CMS的年轻代垃圾回收使用的是Parallel New来做,其行为和Parallel中的差不多相同,他们的实现上有一些不同的地方,比如Parallel可以自动调节年轻代中各区的大小,用的是广度优先搜索等。 老年代使用CMS,CMS的回收和Parallel也基本类似,不同点在与,CMS使用的更复杂的可达性分析步骤,并且不是每次都做压缩的动作,这样达到的效果就是,Stop-The-World的时长会降低,JVM运行中断的时间减少,适合在对延迟敏感的场景下使用。 CMS在Java 9中已经被废弃,但了解CMS的行为对理解G1会有一些帮助,所以这里还是会简单的叙述一下。CMS的步骤大致如下: 第一次标记由于「引入了并发标记」和「不做老年代压缩」,CMS可以带来更好的响应时延表现,但同时也带来了一些问题。G1本身就是作为CMS的替代品出现的,在它的使用场景里,堆不再是连续的被分为上文所说的各种代,整个堆会被分为一个个区域(Region),每个区域可以是任何代。如下图所示:
使用G1的JVM某时刻的堆内存
其中有红色方框的为年轻代(标S的为Survivor区域,其他为Eden),其他蓝色底的区域为老年代(标H的为大对象区域,用以存储大对象)。 四、G1的一些细节 G1与以上3种GC相同,也是基于分代的垃圾回收器。它的垃圾回收步骤可以分为年轻代回收(Young-only phase,类似于Minor GC)和混合垃圾回收阶段(Space-reclamation phase)。下图是Oracle文档中对于此两个阶段的示意图:G1设计目标和适用对象
G1的设计目标是让大型的JVM可以动态的控制GC的行为以满足用户配置的性能目标。G1会在平衡吞吐和响应时延的基础上,尽可能的满足用户的需求。它适用的JVM往往有以下特征: 堆的大小可能达到数十G(或者更大),同时存活的对象数量也很多。 对象的分配和年龄增长的行为随着程序的运行不断的变化 堆上很容易形成碎片 要求较少的Stop-The-World暂停时间,通常小于数百毫秒 对G1的行为进行测试 如果想要看垃圾回收的具体执行过程,可以使用虚拟机参数-Xlog:gc*=debug或者-Xlog:gc*=info,前一个会打印更多的细节。注意传统的VM参数-XX:+PrintGCDetails在Java9中已经废弃,会有Warning信息。可以使用以下代码中的程序去测试: static int TOTAL_SIZE = 1024 * 5; static Object[] floatingObjs= new Object[TOTAL_SIZE]; static LinkedList<Object> immortalObjs = new LinkedList<Object>(); //释放浮动垃圾 synchronized static void renewFloatingObjs() { System.err.println("存活对象满========================================"); if (floatingSize + 5 >= TOTAL_SIZE) { floatingObjs= new Object[TOTAL_SIZE]; floatingSize = 0; } } //添加浮动垃圾 synchronized static void addObjToFloating(Object obj) { if (floatingSize++ < TOTAL_SIZE) { floatingObjs[floatingSize] = obj; if (immortalSize++ < TOTAL_SIZE) { immortalObjs.add(obj); } else { immortalObjs.remove(new Random().nextInt(TOTAL_SIZE)); immortalObjs.add(obj); } } } public static void main(String[] args) { for (int i = 0; i < 10; i++) { new Thread(() -> { while (true) { try { Thread.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } Byte[] garbage = new Byte[1024 * (1 + new Random().nextInt(20))]; if (new Random().nextInt(20) < 2) { if (floatingSize + 5 >= TOTAL_SIZE) { renewFloatingObjs(); } addObjToFloating(garbage); } } }).start(); } } 在这段代码中,模拟了常规程序的使用情况。不断的生成新的大小不等的对象,这些对象中会有大约10%的机会进入浮动垃圾floatingObjs,浮动垃圾会被定期清除。同时会有一部分的对象进入immortalObjs,这些对象被释放的机会更少,它们大概率将成为老年代的常住用户。 从上边的测试可以得到如下GC日志1,这是一次完整的年轻代GC,从中可以看到,默认的区域大小为1M,同时将开始一次Full GC,其格式大致为[<虚拟机运行的时长>][<日志级别>][<标签>] GC(<GC的标识>) <其他信息> //日志1 [0.014s][info][gc,heap] Heap region size: 1M //一次完整的年轻代垃圾回收,伴随着一次暂停 [12.059s][info ][gc,start ] GC(18) Pause Young (G1 Evacuation Pause) [12.059s][info ][gc,task ] GC(18) Using 8 workers of 8 for evacuation [12.078s][info ][gc,phases ] GC(18) Pre Evacuate Collection Set: 0.0ms [12.078s][info ][gc,phases ] GC(18) Evacuate Collection Set: 18.6ms [12.079s][info ][gc,phases ] GC(18) Post Evacuate Collection Set: 0.3ms [12.079s][info ][gc,phases ] GC(18) Other: 0.3ms [12.079s][info ][gc,heap ] GC(18) Eden regions: 342->0(315) [12.079s][info ][gc,heap ] GC(18) Survivor regions: 38->35(48) [12.079s][info ][gc,heap ] GC(18) Old regions: 425->463 [12.079s][info ][gc,heap ] GC(18) Humongous regions: 0->0 [12.078s][debug][gc,ergo,ihop ] GC(18) Request concurrent cycle initiation (occupancy higher than threshold) occupancy: 485490688B allocation request: 0B threshold: 472331059B (45.00) source: end of GC [12.078s][debug][gc,ihop ] GC(18) Basic information (value update), threshold: 472331059B (45.00), target occupancy: 1049624576B, current occupancy: 521069456B, recent allocation size: 20640B, recent allocation duration: 817.38ms, recent old gen allocation rate: 25251.50B/s, recent marking phase length: 0.00ms [12.078s][debug][gc,ihop ] GC(18) Adaptive IHOP information (value update), threshold: 472331059B (47.37), internal target occupancy: 997143347B, occupancy: 521069456B, additional buffer size: 367001600B, predicted old gen allocation rate: 318128.08B/s, predicted marking phase length: 0.00ms, prediction active: false [12.078s][debug][gc,ergo,refine ] GC(18) Updated Refinement Zones: green: 15, yellow: 45, red: 75 [12.079s][info ][gc,heap ] GC(18) Eden regions: 342->0(315) [12.079s][info ][gc,heap ] GC(18) Survivor regions: 38->35(48) [12.079s][info ][gc,heap ] GC(18) Old regions: 425->463 [12.079s][info ][gc,heap ] GC(18) Humongous regions: 0->0 [12.079s][info ][gc,metaspace ] GC(18) Metaspace: 5172K->5172K(1056768K) [12.079s][debug][gc,heap ] GC(18) Heap after GC invocations=19 (full 0): [12.079s][info ][gc ] GC(18) Pause Young (G1 Evacuation Pause) 803M->496M(1001M) 19.391ms [12.079s][info ][gc,cpu ] GC(18) User=0.05s Sys=0.00s Real=0.02s 年轻代回收(Young-only) 对于纯粹的年轻代回收,其算法很简单,与Parallel和CMS的年轻代十分类似,这是一个多线程并行执行的过程,同样需要Stop-The-World(对应上边日志中的Pause Young),停下来所有的工作线程,然后将Eden上存活的对象拷贝到Suvivor区域,这里会将很多个对象从多个不同的区域拷贝到少数的几个区域内,所以这一步在G1中叫做疏散(Evacuation),同时把Suvivor上触及年龄阈值的对象晋升到老年代区域。 老年代回收(concurrent cycle) G1的老年代回收是在老年代空间触及一个阈值(Initiating Heap Occupancy Percent)之后,这个回收伴随着年轻代的回收工作,但与上边所说的回收有些不同。 年轻代回收:伴随着年轻代的回收工作,同时会执行并发标记和一部分清理的工作,这样可以共用年轻代垃圾回收的Stop-The-World。 第一次标记:对应一次Pause Initial Mark